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ABSTRACT

The purpose of this project was to establish a new hyperspectral remote sensing laboratory

at the Mid-America Remote sensing Center (MARC), dedicated to in situ and laboratory

measurements of environmental samples and to the manipulation, analysis, and storage of

remotely sensed data for environmental monitoring and research in ecological modeling

using hyperspectral remote sensing at MARC, one of three research facilities of the Center

of Reservoir Research at Murray State University (MSU), a Kentucky Commonwealth

Center of ExceUence. The equipment purchased, a FieldSpec® FR portable

spectroradiometer and peripherals, and ENVI hyperspectral data processing software,

allowed MARC to provide hands-on experience, education, and training for the students of

the Department of Geosciences in quantitative remote sensing using hyperspectral data,

Geographic Information System (GIS), digital image processing (DIP), computer,

geological and geophysical mapping; to provide field support to the researchers and

students collecting m situ and laboratory measurements of environmental data; to create a

spectral library of the cover types in Kentucky and other states; and to establish a World

Wide Web server to provide the spectral library to other academic, state and Federal

institutions. Much of the research will soon be published in scientific journals. A World

Wide Web page (htq_:/?marc.mursuky.edu/projects/nasa9798.htm) has been created at the

web site of MARC. Results of this project are grouped in two categories, education and

research accomplishments. The Principal Investigator (PI) modified remote sensing and

DIP courses to introduce students to m situ field spectra and laboratory remote sensing

studies for environmental monitoring in the region by using the new equipment in the

courses. The PI collected in situ measurements using the spectroradiometer for the ER-2

mission to Puerto Rico project for the Moderate Resolution Imaging Spectrometer

(MODIS) Airborne Simulator (MAS). Currently MARC is mapping water quality in

Kentucky Lake and vegetation in the Land-Between-the Lakes (LBL) using Landsat-TM

data. The PI and Dr. Naugle collected in situ spectra for the water quality research on May

31, 1998. A Landsat-TM scene of the same day was obtained to relate ground

measurements to the satellite data. A spectral library has been created for overstory species

in LBL. Some of the methods, such as nPDF and IDFD techniques for spectral unmixing

and reduction of effects of shadows in classifications; comparison of hyperspectral

classification techniques; and spectral nonlinear and linear unmixing techniques, are being

tested using the laboratory.



1. Introduction

This report presents the research and education accomplishments for the NASA Project

NAG5-6582 "Hyperspectral Remote Sensing and Ecological Modeling Research &

Education at Mid-America Remote sensing Center (MARC): Field and Laboratory

Enhancement" at MARC, Murray State University (MSU), Murray, Kentucky from

November 1997 through October 1998. Two assistants at MARC have worked with the

Principal Investigator (PI) to accomplish the tasks involved.

The purpose of this project was to establish a new hyperspectral remote sensing

laboratory at MARC, dedicated to in situ and laboratory measurements of environmental

samples and to the manipulation, analysis, and storage of remotely sensed data for

environmental monitoring and research in ecological modeling using hyperspectral

remote sensing at MARC, one of three research facilities of the Center of Reservoir

Research at MSU, a Kentucky Commonwealth Center of Excellence. The equipment

purchased, a FieldSpec® FR portable spectroradiometer and peripherals, and ENVI

hyperspectral data processing software, allowed MARC: 1) to provide hands-on

experience, education, and training for the students of the Department of Geosciences in

quantitative remote sensing using hyperspectral data, Geographic Information System

(GIS), Digital Image Processing (DIP), computer, geological and geophysical mapping;

2) to provide field support to the researchers and students collecting in situ and

laboratory measurements of environmental data; 3) to give more stimulating and

improved learning experience through modern educational technology to students

enrolled in the Geosciences; 4) to create a spectral library of the cover types in

Kentucky and other states; 5) to establish a World Wide Web server to provide the

spectral library to other academic, state and Federal institutions; 6) to support

undergraduate and graduate curricula in remote sensing and GIS in the Department; and

7) to encourage use of remote sensing in environmental research and monitoring. The

PI modified remote sensing, and DIP courses to introduce students to m situ field

spectra and laboratory remote sensing studies for environmental monitoring in the

region. The new equipment has been used in the Geoscience courses in remote

sensing/DIP. The students in the Department are becoming more competitive in the

field of hyperspectral remote sensing. One of the PI's graduate students who has been

working on a project involving hyperspectral measurements using the spectroradiometer

to study effects of toxic metals on vegetation has already started working for a high-tech

company at the Stennis Space Center. Another graduate student of the PI is conducting



aresearchon the effects of petroleum on vegetation spectra. The PI has been able to

collect in situ measurements using the spectroradiometer for the ER-2 mission to Puerto

Rico project for the Moderate Resolution Imaging Spectrometer (MODIS) Airborne

Simulator (MAS). Currently MARC is mapping water quality in Kentucky Lake and

vegetation in the Land-Between-the Lakes (LBL) using Landsat-TM data. Drs Naugle

and Cetin collected in situ spectra for the water quality research on May 3 l, 1998. A

Landsat-TM scene of the same day was obtained to relate ground measurements to the

satellite data. A spectral library has been created for overstory species in LBL. MARC

is in the process of enhancing reservoir hydrologic, sedimentologic, and biologic

modeling. Particularly the field spectroradiometer has been a vital part of this project to

obtain field data to support ecological modeling research and education at MARC and

the Department of Geosciences at Murray State University. The laboratory will impact

both researchers at MARC, and majors in Geosciences and non-majors with regard to

modern technologies associated with the rapidly growing fields of remote sensing, GIS,

DIP, and computer mapping.

Results of the project are grouped in two categories, education and research. Education

accomplishments using the laboratory described in this report are: 1) modification of

remote sensing related courses to include hyperspectral remote sensing; and 2) hands-on

experience, education, and training for the students of the Department of Geosciences in

quantitative remote sensing using hyperspectral data.

Research in four major areas using the laboratory is described in this report:

1) classification algorithm development using the n-Dimensional Probability Density

Functions (nPDF) and Interclass Distance Frequency Distribution (IDFD) techniques

for reduction of effects of shadows in classifications and linear and non-linear spectral

mixture studies; 2) mapping of water quality in Kentucky Lake using hyperspectral

remote sensing; and 3) field spectra collection for remotely sensing studies and

construction of spectral library for western Puerto Rico and western Kentucky.

A World Wide Web page (http:/f/marc.mursuky.edu_projects/nasa97 98.htm) has been

created for this research at the web site of MARC. More detailed and up-to-date

research is available at the web site. The spectral libraries at the home page are

available in ASCII and graphics formats.



2. Education Accomplishments Using the Laboratory

The PI has modified his Advanced Remote Sensing and DIP courses to include

hyperspectral remote sensing and to provide hands-on experience, education, and

training for the students of the Department of Geosciences in quantitative remote

sensing using hyperspectral data.

New laboratory exercises have been created using the ENVI software and the

equipment. Students analyzed samples and obtained reflectance spectra of the samples

to include in processing of hyperspectral data, such as AVIRIS data of Cuprite,

Nevada. Some of the students of the courses used the spectroradiometer for their

term projects. Environmental data have been and will be collected to be used by the

students and researchers for ecological modeling research.

The PI has been working on a manual for students and researchers to use the

laboratory equipment. All the necessary processing and warnings regarding the

measurements of reflectance and absorption/transmission spectra are included in the

manual.

The students in the Department are becoming more competitive in the field of

hyperspectral remote sensing. One of the PI's graduate students who has been

working on a project involving hyperspectral measurements using the

spectroradiometer to study effects of toxic metals on vegetation has already started

working for a high-tech company at the Stennis Space Center. Another graduate

student of the PI will be conducting a research on the effects of petroleum on

vegetation spectra.

3. Research Accomplishments Using the Laboratory

Research in four major areas using the laboratory is described in this report: 1)

classification algorithm development using the n-Dimensional Probability Density

Functions (nPDF) and Interclass Distance Frequency Distribution (IDFD) techniques

for reduction of effects of shadows in classifications and linear and non-linear spectral

mixture studies; 2) mapping of water quality in Kentucky Lake using hyperspectral

remote sensing; and 3) field spectra collection for remotely sensing studies and

construction of spectral library for western Puerto Rico and western Kentucky.



3.1. n-Dimensional Probability Density Functions (nPDF) and Interclass

Distance Frequency Distribution (IDFD) techniques

The nPDF procedure is an approach to the display, analysis, reduction and classification of

multispectral data. In this research, the applications of the nPDF classification of remotely

sensed data with shadow problems are illustrated. The IDFD technique is being developed

further to improve classification of mixtures and data with shadow problems.

Classifcation algorithms may be divided into two broad categories, parametric and

nonparametric classifications. Parametric or relative classification algorithms generally

assume normal statistical distribution for classes. Parametric classifiers, such as maximum

likelihood and Mahalanobis distance, require selection of training fields representing the

entire area classified, When there are large number of classes, a relative classifier is

usually preferred. On the other hand, nonparametric or absolute techniques do not assume

any particular class statistical distribution. When an absolute classification, such as

parallelelepiped classification scheme, is used, only classes of interest are classified.

Previous studies on the classification of remotely sensed data have shown the difficulties

of selecting a classification method. The commonly used relative classification techniques,

such as maximum likelihood and Maha/anobis distance, have limited capability for a

special purpose classification. When the relative classifiers are used, interclass distances

can be shown only statistically. For special purpose classifications, absolute classification

schemes have more advantageous than relative classifiers. One of the approaches for an

absolute classification of multispectral data is n-Dimensional Probability Density Functions

(nPDF) procedure.

Previous studies on the display, analysis, and classification of remotely sensed data have

shown the difficulties of selecting a classification method. The commonly used

classification techniques, such as maximum likelihood and Mahalanobis, have a number of

inherent limitations. These limitations include: 1) The memory requirements of the

computer routines tend to be very large for high dimensional data, and the run-times are

very long. Therefore, the algorithms tend to be implemented in computer routines that

allow for only a limited number of input bands. 2) The algorithms are relative classifiers,

and thus training fields from all spectral classes need to be identified prior to classification.

Classes are described statistically; therefore it is very difficult to check if the training fields

selected represent the entire data. 3) Class overlap, class distribution and interclass



distances can be shown for only two bands at a time. Furthermore, interclass distances

can be shown only statistically. 4) The algorithms assume the data are normally

distributed, although this is rarely the case.

The nPDF procedure, a nonparametric classification technique, is an approach to the

display, analysis, reduction and classification ofmuitispectral data that overcomes many of

the problems described above. The nPDF approach may be explained using a cube model.

In three dimensional feature space the feature vector is defined by X=[x_,x2,x3]. The

location of the measurement within the range of the total possible measurement space can

be described by the distances to the two comers of a cube:

2 2 2 )1/2 2 2 )2 ]1/2D 1= (x l+x 2 +x 3 ,and D 2= [x l+x 2+(R-x 3

For the multi-dimensional case, the feature vector is defined by X-[xl,x2,x3,...,Xn] , where

n is the dimension of the data and R is the maximum possible range of the data (255 for 8

bit data.) When a hyper-dimensional cube is used, the vector magnitudes (the distances to

the two corners) for n- dimensional data are;

j=l
g

D2 / _ x2j
: *( 1 - aj ) + (R- xj)2 * aj

j=l

1/2

j = 1,2,4,5,... a = 0

if {j 3,6,... a=l

where j is the band number. A generalized formula for the distance to the comers of a

hyper-dimensional cube can be written as (i is the corner or component number);

D i = x 2 , •.1 ( 1 - aj ) + (R- aj

j=l

(1)



There are eight possible corners of a three-dimensional cube (Figure 1). Four of the

comers can be selected as principal comers (1 through 4), the remaining comers (5

through 8) are the complimentary to the four principal corners. For the hyper-dimensional

cube model, "a" values for the equation (1) are as follows (j is the band number):

D 1 " For all j values a = 0

j = 1,2,4,5,... a = 0 ___ (101) "r
D 2 " if { l_/

j 3,6,... a-- 1 ,u2 I_\ \,

j= 1,3,4,6,.. a : 0 (001 '_ \\ _ "\\\\_i

j= 1,4,... a=O

D 4 • if {j=2,3,5,6,... a=l _[ ___ i//

The nPDF formulais: J/_j z_/ _nPDF i = S * D i / (2 BIT * NB 1/2) (2) / f J ""_
/f.,,,_4t/jJ [

where, .4 _._._-]_ff_ B,._d t ¢1oo_*R
nPDF i = Component i ofnPDF, I o\. / 2ss_.

i= Comer number, (ooo) .;_ /D ,\

S = Desired scale for the nPDF axes, %" _.._/ _'-\
BIT = Number of bits of input data, *'3 2ss
NB = Number of bands used. (oto)

D. = Calculated distance for
l

component i,

"5
('111)

(11o;'6

Frequency plots of two nPDF components (hyper-dimensional distances) provide an

excellent perspective of multidimensional data distribution. Ignoring complimentary

comers, there are six possible combinations of two corners from which to view the data

distribution (1-2, 1-3, 1-4, 2-3, 2-4, and 3-4.) Depending on the spectral distribution of

the classes of interest, the user can select corners, which provide the maximum separation

of the classes. A convenient scale for these nPDF components is 8 bit in range, and thus a

2-dimensional frequency plot requires a 256 by 256 array.

The cube model has the advantage of being a conceptually simple way of describing

corners in multidimensional space. However, it does tend to limit the choice of corners

for four and higher dimensional data. Where this is a problem, we use the "a" values (see

equation 1) to describe the comer location. Thus, comer #2 is also labeled (001), which

can be interpreted as a corner that is the minimum for the first two bands, and the

maximum in the third band. Using this convention, the length of the list of "a" values



depends on the number of input bands, and thus the corner corresponding to the origin in

a four band image would be described as (0000).

The Interclass Distance Frequency Distribution (IDFD) technique is an absolute

classification approach for multispectral data classification. The IDFD displays data and

class distribution graphically. The IDFD approach is user-interactive and can be used for

sub-pixel classification.

The IDFD technique can be explained by using two class example. In feature space the

distances to class means can be generalized as

djk- IMk- Xjl

where

d =

j =

k =

X =

Mk=

distance between a feature and a defined class

feature (pixel)

class

feature vector

mean vector of class k

Initially two classes of interest are selected and their statistical information is obtained by

using training fields. The mean measurement vectors of the classes are used to calculate

the distances for each pixel of the data and stored in a two dimensional frequency data

array. The following 1DFD formula is utilized to calculate the two-dimensional data

distribution by using a desired scale factor and the known parameters of the data:

IDFDjk: djk* S/(n 1/2*A)

where

IDFDjk

S

n

A

= IDFD value of the feature (pixel) for class k

= scale for the axes

= number of bands (dimensions) used

= maximum range of the data

One of the ways to perform the IDFD classification is to use two classes as reference

points. In two-dimensional feature space, each data axis represents the distance to the



referenceclass. Training fields are selected for other classes and the training data

distribution (frequencies) using the distances to the reference classes is obtained. After

examining the results visually, a classification look-up table is created and the classification

is performed by using the look-up table.

The magnitude of the distances can be calculated by using one of the distance measures,

such as Euclidean distance. The use of other distance measures utilizing covariance matrix

along with mean measurement vector can be an advantage and may improve the

classification results by improving the class separation.

For this research, nPDF technique was used to determine if the technique could

improve the classification of areas with shadow problems. In order to do examine the

problem, a land cover type, Tertiary sand sample, was used to determine the spectral

reflectance characteristics of the samples under different shadow conditions. Three

levels, 100% reflectance (no shadow), 50% and 25% shadow conditions were used to

test the nPDF technique. The nPDF 1 and nPDF4 values were calculated and plotted

in the nPDF space (Figure 2).

20O

1550

5O

O
O

........ [ ...... Y ........ T .....

0 ,50 100 150 200

I:ET=30

I:E:F'_ _

nPDF1

Figure 2. nPDF data distribution: 100% (PDFIO0), 50% (PDF50), and 25%

(PDF25) light conditions

A series of statistical analyses (trend analysis: logarithmic, exponential, polynomial and

power) were attempted to find the best fit. The power trend analysis had the best fit

(y = 2994.7 x -j) with a R 2 value of 0.999 (Figure 3).
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Figure 3. Trend analysis of the nPDF data distribution

This test shows that the nPDF values can be used to determine land cover types in

shadows. Other sets of tests are planned to examine and validate the findings of this

research. The technique is also being tested for spectral unmixing.

Some of the methods that are being tested using the laboratory are as follows:

Testing of the IDFD technique for spectral unmixing and reduction of effects of

shadows in classifications; testing and comparison ofhyperspectral classification

techniques; testing of some hypotheses related to spectral nonlinear and linear

unmixing techniques by using some systematic tests being conducted on mixtures of

minerals, vegetation/soil, and some surface materials. Initial findings showed that at

mm/cm level, linear mixing techniques did not work. Please visit our home page at

http://marc.mursuky.edu/projects/nasa97 98.htm for additional and up-to-date

information.

3.2. Mapping of water quality in Kentucky Lake using hyperspectral remote

sensing

Methods currently used to monitor water quality across the landscape consist of m situ

measurements or collection of water samples for analysis in a laboratory. These

10



techniques are time consuming and expensive, and do not give the synoptic and temporal

views of a landscape necessary to allow management decisions that can effectively control

or improve water quality. Major factors affecting water quality are suspended sediment,

chlorophyll, dissolved organic matter (DOM), and chemicals derived from natural sources

and human activities. Suspended sediment, chlorophyll, and DOM cause changes in the

optical characteristics of surface waters. The potential therefore exists for monitoring

these parameters by measuring the optical characteristics of surface waters with remote

sensing techniques.

The objective of this study was to use Landsat-TM and field spectroradiometer data to

map turbidity levels in the Blood river Embayment of Kentucky Lake. The relation

between Landsat TM radiance values and ground spectra values for all four bands, and

measured values of suspended sediment concentrations and turbidity were quantified using

simple linear and multiple regression equations. An optimum/best fitted equation was

chosen. This calibrated regression model was then applied to map the suspended sediment

concentrations and turbidity for the entire study area. It is shown that Landsat-TM data

can be used successively to quantify suspended sediment concentrations in the Blood river

embayment.

An attempt has been made to develop a monitoring procedure to correlate the spectral

reflectance data obtained using the field spectroradiometer and Landsat TM data.

Samples and ground spectra were collected on 31 May 1998 concurrent with satellite

overpass at 10 sites located in the Blood fiver embayment of Kentucky Lake (Figure 4).

Trimble GPS was used for precise location of sampling points.

Water Quality Parameters like, suspended sediment, chlorophyll, vertical extinction

coefficient, Dissolved oxygen & pH were analyzed for the sites. The field

spectroradiometer was used to measure spectra from 350 - 2500 nm at the locations on 31

May 1998 (Figures 5 thru 14).

11



Satelliteimagevaluesandgroundreflectancevalueswerecorrelatedto thevaluesderived

fromwater samplescollectedduringtheoverflightof theLandsatTM. Thesatelliteimage

valuesandthewaterparametervalueswereusedasinput to aregressionanalysis.The

relationshipsgeneratedusingtheregressionanalysiswereusedto transformthesatellite

reflectancedatainto thewaterparametersof interest.Averageembaymentturbidity

estimateswerecalculatedusingsatellite-derivedvalues.A modelwascreatedusinga

georeferencedsatelliteimageof 05/31/1998andwaterqualityparametersobtained

False Color Composite of
Blood River Embayment of

Kentucky Lake

Location Map

Kentucky
Lake

Blood River ,_mple points

N

Figure 4. Location of the study area and sample locations (May 31, 1998 Landsat-TM data)
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through Hancock Biological Station. Relationships between satellite and concurrent

turbidity (Figure 15) field data were examined through a regression analysis. In the

Blood River - Turbidity

_0

=>
J2

6

o

Figure 15.

//1 \

J ,'////

/ \

t//I

/

/ \
\

\,

B2 B3 B4 B5 B6 B7 B8 B9 BI0

$Illtlo hill

Blood River turbidity levels

selection process, the Landsat TM bands and the ground spectra corresponding to the four

bands (of the TM bands 1, 2, 3, and 4), and water quality parameters were considered

(Figures 16 and 17).
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The reflectance of water and increasing suspended sediment concentrations had a positive

correlation. Mapping suspended sediment concentrations and chlorophyll using satellite

images provided mixed results. In general, chlorophyll concentrations were inversely

related to suspended sediment concentrations. Reflectance calculated from the four

Landsat TM bands increased as a function of increasing concentrations of suspended

sediment. The reflectance values were inversely related to the concentration of

chlorophyll but the relationships were not statistically significant. A series of statistical

models were developed and examined to determine the best relationship between the

measurements of suspended sediment concentrations at the 10 sample locations and the

reflectance values computed from all four bands of the Landsat-TM (Figure 17) and the

spectrometer reflectance values. Based on the R2 and the simplicity models, the best

19
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appropriate model was determined through multiple regression technique using SAS

software. The following equations were selected to represent the best relation between

the suspended sediment/turbidity concentrations and their corresponding radiance values

of the Landsat TM data (Figure 18).

Suspended Sediment = 64.8929 - 2.4174 TMBand3

Turbidity = 23.9026 - 0.8189 TMBand3

The m 2 determination is 0.6046 for suspended sediment and 0.5960 for turbidity. The

calibrated regression model was extended to the study area for mapping of suspended

20



Bloodriver embayment of Kentucky lake
showing Turbidity levels.

Legend
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Figure 18. Turbidity levels of the study area

sediment concentrations and turbidity. The extension of this model was done by using a

simple linear discriminant function (Imagine Map Modeler Software). By applying the

function to each pixel in the study area and then grouping the water quality variability into

21



classes. Field spectroradiometer reflectance values were imported in to Excel to analyze

the corresponding the four bands of the TM data.

Calibrated regression models that relate remotely sensed data to field measurements may

be used to provide maps of the synoptic distributions of water quality maps. The present

study used the TM data in conjunction with the FieldSpec spectroradiometer reflectance

values with their corresponding physical values for mapping of suspended sediment

concentrations and turbidity in Blood river Embayment of Kentucky Lake. In order to

quantitatively determine suspended sediment concentrations, high spectral resolution at

approximately 675 and 705 nm is required.

3.3. Spectral library

A spectral library dedicated to in situ and laboratory measurements of environmental

samples for environmental monitoring and research in ecological modeling has been

created at the web site of MARC. Spectra of various cover types in Kentucky and

other states are being added to the spectral library and are available at the web site

(http://marc.mursuky.edu/projects/nasa97__98.htm). The PI has been mapping

overstory vegetation (Table I) in the Land-Between-the Lakes (LBL) using Landsat-

TM data. Reflectance spectra of most of the overstory species (Table 1) in LBL are

available at the web site (Figure 19).

The PI collected in situ measurements using the spectroradiometer for the ER-2

mission to Puerto Rico project for the Moderate Resolution Imaging Spectrometer

(MODIS) Airborne Simulator (MAS). In order to make atmospheric corrections and

reflectance conversions, field spectral measurements at sites with considerable size are

needed. Two of the measurements (Figures 20 and 21) were taken at the two airports,

Ramey and Mayaguez, since these airports are the largest available targets to correct

the MAS data. The other spectral measurements will be processed and added to the

spectral library. The PI is currently compiling all the data with ground pictures. These

data will also be available at the web site.
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Table 1. Overstory Vegetation Species in LBL

species

Carya

authority habitacronym genus common name
ACNE Acer negundo L. boxelder overstory

ACRU Acer rubrum L red maple overstory
ACSA Acer saccharum Marsh. sugar maple overs'tow

BENI Betula nigra L. river birch overstory

CACO Carya cordiformis (Wangenh.) K. bittemut hickory overstory
CAGL Carya glabra (Miller) Sweet pignut hickory overstory

CAlL Carya illinoensis Wang pecan overstory
CALA Carya laciniosa (Michaux f.) Loudon shellbark hickory overstory
CAOVT ovata

CAOVL iCarya ovalis
CATO ICarya tomentosa

CELA Celtis laevigata
CEOC Celtis occidentalis

CLKE Cladrastis kentukea

virginianaDiospyros

Miller shagbark hickory overstory

(Wangenh.) Sarg. red hickory overstory

(Poiret) Nutt. mockemut hickory overstory
Willd. sugarberry overstory

_. hackberry overstory
yellowwood(Dum.-Cours.) Rudd

DlVl _. 3ersimmon
Ehrh. american beech

_. white ash

overstory

overstory

FAGR Fagus grandifolia
FRAM Fraxinus americana

FRPE Fraxinus pennsylvanica
GLTR Gleditsia triacanthos

JUCI Juglans cinerea

JUNI Juglans nigra
LIST Liquidambar styraciflua

LITU Liriodendron tulipifera
MORU Morus rubra

NYSY Nyssa sylvatica

OXAR Oxydendrum arboreum
PIEC Pinus echinata

PIST Pinus strobus

PITA Pinus taeda
PIVI

PLOC

Pinus

Platanus
virginiana
occidentalis

Marshall

..

Marshall
(L) DC
Miller

L.
L.

Miller

Populus

L°

PODE Populus deltoides IBartram ex Marshall
POHE L.

Prunus

Quercus

PRSE

QUAL

QUBI
QUCO

Quercus
Quercus

heterophylla
serotina

alba

_icolor
coccinea

Ehrh.

_lacrocarpa

L°

QUFA Quercus

QUIM Quercus
QULY Quercus
IQUMA Quercus

iQUMC
QUMI

Quercus
Quercus

Willd.
Muenchh.

falcata Michaux
imbricaria Michx.

lyrata Walter
madlandica Muenchh.

Michx.

michauxii Nutt.

overstory
Ioverstory

green ash overstory

honeylocust overstory
butternut overstory
black walnut

sweetgum

fellow poplar

red mulberry

overstory
overstory

overstory

overstory
blackgum overstory

sourwood overstory

shorUeaf pine overstory
eastern white pine overstory

Ioblolly pine overstory
virginia pine overstory

sycamore overstory
eastern cottonwood overstory

swamp cottonwood overstory

black cherry overstory
white oak overstory

swamp White Oak overstory
scarlet oak overstory

southern red oak overstory

shingle Oak overstory
overcup oak overstory
blackjack oak overstory

bur Oak overstory
swamp chestnut oak overstory
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Table 1 (C

acronym
)nt.). Overstory Vegetation S

(lenus species

)ecies in LBL

Quercus

authority

Ipagoda

habitcommon name

QUMU Quercus muehlenbergii Engelm. chinquapin oak overstory
QUNI Quercus Inigra _. water oak overstory

QUPA Raf. cherryba_ oak ovemtory

_. willow oak overstory
Muench. pin oak overstory

_. chestnut oak overstory
_. northem red oak overstory

Buckley shumard oak overstory

Wangenh. post oak overstory
Lam. 0lack oak overstory

Walter carolina buckthom overstory
_. black locust

(Nutt.) Nees
Marshall

(L.) Rich.
Michaux

sassafras
black willow

bald cypress

overstory

QUPH Quercus phellos
QUPL Quercus palustds

QUPR Quercus prinus
QURU Quercus rubra

QUSH Quercus shumardii

QUST Quercus stellata
QUVE Quercus velutina

RHCA Rhamnus caroliniana

ROPS Robinia psuedoacacia
SAAL Sassafras albidum

SANI Salix nigra
TADI Taxodium distichum

ULAL Ulmus alata
ULAM Ulmus americana

ULRU Ulmus rubra Muhlenb.

overstory

overstory
overstory

winged elm overstory
american elm overstory

slippery elm overstory

f) 8

LBL Overstory Vegetation Spectra
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Figure 19. Spectral reflectance curves of overstory vegetation species in LBL
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Figure 21. Spectral reflectance curves of Mayaguez airport in western Puerto Rico
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4. Conclusions

The purpose of this project was to establish a new hyperspectral remote sensing laboratory

at MARC dedicated to m situ and laboratory measurements of environmental samples. The

equipment purchased, a FieldSpec® FR portable spectroradiometer and peripherals, and

ENVI hyperspectral data processing sottware, allowed MARC to provide hands-on

experience, education, and training for the students of the Department of Geosciences in

quantitative remote sensing using hyperspectral data. A World Wide Web server was

created to provide the spectral library to other academic, state and Federal institutions.

Much of the research will soon be published in scientific journals. Some of the methods,

such as nPDF and IDFD techniques for spectral unmixing and reduction of effects of

shadows in classifications; comparison of hyperspectral classification techniques; and

spectral nonlinear and linear unmixing techniques, are being tested using the laboratory.
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